

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

Alphasense Ltd, Sensor Technology House, 300 Avenue West, Skyline 120, Great Notley. CM77 7AA. UK Telephone: +44 (0) 1376 556 700 Fax: +44 (0) 1376 335 899 E-mail: sensors@alphasense.com Website: www.alphasense.com

Patented

0.70 Recess

-200 to -650

-70 to +70

< 80

15

20

50

< ±0.5

0 to 20

> 24

60 to 80

0 to 25

20 to 90

< -80

< 100

< -3

< -3

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

-30 to 40

80 to 120

33 to 100

15 to 85

6

< 6

< 5

80 to 105

< -20 to -40

16.5

OX-A431 Performance Data

Figure 2 Sensitivity temperature dependence to 1ppm O₃

echnica

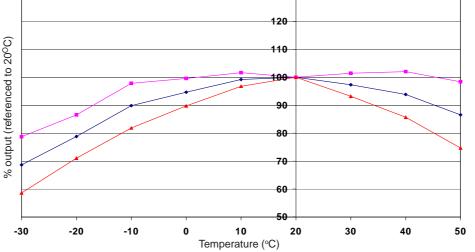


Figure 2 shows the mean and 95% confidence levels for the temperature dependence of sensitivity at 1ppm O_3 .

Measuring Ozone at higher temperatures requires good casing design to ensure the Ozone reaches the sensor before reacting.

This data is taken from a typical batch of sensors.

Figure 3 Zero temperature dependence

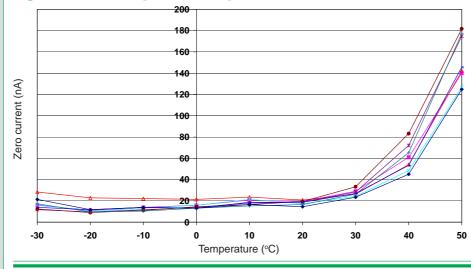


Figure 3 shows the variation in zero output of the working electrode caused by changes in temperature, expressed as nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futher information on zero current correction.

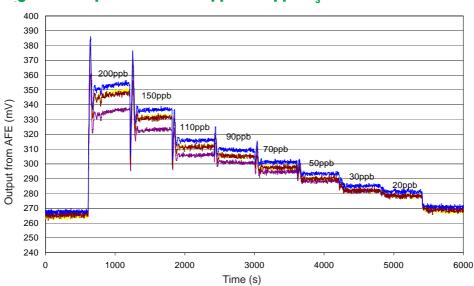


Figure 4 Response from 200 ppb to 0 ppb O₃

Figure 4 shows response from 200ppb O_3 to 0ppb O_3 .

Use of Alphasense AFE circuit reduces noise to 15ppb, with the opportunity of digital smooting to reduce noise even further.

Offset voltage is due to intentional AFE circuit electronic offset.

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in this document is for guidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information contained within. (©ALPHASENSE LTD) Doc. Ref. OX-A431/JUL19

OX-A431 Oxidising Gas Sensor Ozone + Nitrogen Dioxide 4-Electrode

Patented

The OX-A431 detects both ozone and nitrogen dioxide ($O_3 + NO_2$). The NO2-A43F measures only nitrogen dioxide, filtering out ozone. Using these sensors together allows you to calculate the O_3 concentration by subtracting the corrected NO2-A43F concentration from the corrected OX-A431 concentration.

Before subtracting to determine ozone concentration, ensure that the signals from the two sensors have been corrected for electronic zero offset, sensor zero offset and temperature dependence, and sensitivity (nA/ppm) calibration and temperature dependence.

Specification NO₂ Sensing

PERFORMANCE

PERFORMANC	E		
	Sensitivity to NO ₂	nA/ppm at 2ppm NO ₂	-200 to -550
	Response time	t_{90} (s) from zero to 1 ppm NO ₂	< 80
	Zero current	nA in zero air at 20°C	-70 to +70
	Noise*	±2 standard deviations (ppb equivalent)	15
	Range	ppm NO ₂ limit of performance warranty	20
	Linearity	ppm error at full scale, linear at zero and 20ppm NO_2	< ±0.5
	Overgas limit	maximum ppm for stable response to gas pulse	50
	•	ense AFE low noise circuit	00
	Tested with Alphas	ense APE low holse circuit	
LIFETIME	Zero drift	ppb equivalent change/year in lab air	0 to 20
	Sensitivity drift	% change/year in lab air, monthly test	< -20 to -40
	Operating life	months until 50% original signal (24 month warranted)	> 24
ENVIRONMEN	TAL		
		(% output @ -20°C/output @ 20°C) @ 2ppm NO	50 to 80
	Sensitivity @ 40°C		115 to 130
	Zero @ -20°C	nA	0 to 25
	Zero @ 40°C	nA	20 to 50
CROSS	H ₂ S	sensitivity % measured gas @ 5ppm H ₂ S	< -100
SENSITIVITY	NO	sensitivity % measured gas @ 5ppm NO	< 5
OENOITI	Cl ₂	sensitivity % measured gas @ 5ppm Cl ₂	< 100
	SO ₂	sensitivity % measured gas @ 5ppm SO ₂	< -3
		sensitivity % measured gas @ 5ppm CO	< -3
	C_2H_4	sensitivity % measured gas @ 100ppm C_2H_4	< 0.1
	NH ₃	sensitivity % measured gas @ 20ppm NH ₃	< 0.1
	H	sensitivity % measured gas @ 100ppm H ₂	< 0.1
	H ₂ CO ₂	sensitivity % measured gas @ 5% Vol CO ₂	0.1
	Halothane	sensitivity % measured gas @ 100ppm Halothane	< 0.1
			< 0.1
KEY SPECIFICATIONS			
	Temperature range	$^{\circ}$	-30 to 40
	Pressure range	kPa	80 to 120
	Humidity range	% rh continuous	15 to 85

At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions.

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

Figure 5 Sensitivity temperature dependence to 2ppm NO,

Specification echnical

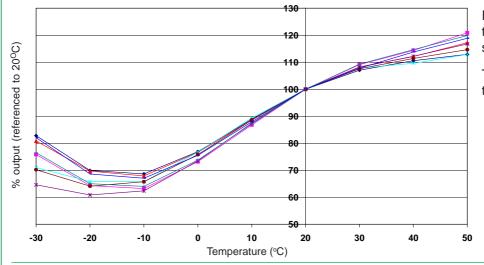
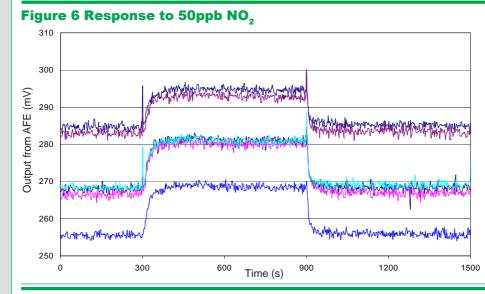



Figure 5 shows the temperature dependence of sensitivity at 2ppm NO₂.

This data is taken from a typical batch of sensors.

The OX-A431 shows fast response and return to baseline, even at low concentrations.

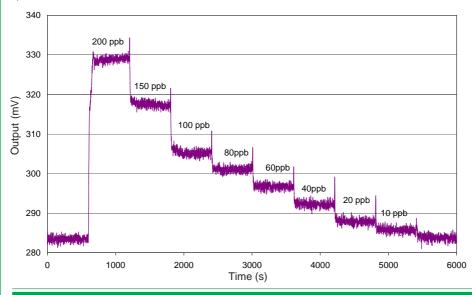


Figure 7 shows response from 200ppb NO_2 to 0ppb NO_2 .

Use of Alphasense AFE circuit reduces noise to 15ppb, with the opportunity of digital smooting to reduce noise even further.

Offset voltage is due to intentional AFE circuit electronic offset.

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. For Application Notes visit "www.alphasense.com".

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in this document is for guidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information contained within. (©ALPHASENSE LTD) Doc. Ref. OX-A431/JUL19